MINOR C-21 FURANOTERPENES FROM THE SPONGES SPONGIA OFFICINALIS AND HIPPOSPONGIA COMMUNIS

G. CIMINO, S. DE STEFANO and L. MINALE

Laboratorio per la Chimica e Fisica di Molecole di Interesse Biologico del C.N.R., Arco Felice, Naples, Italy

and

E. FATTORUSSO

Institute of Organic Chemistry, University of Naples. Italy

(Received in the UK 14 June 1971; Accepted for publication 18 August 1971)

Abstract—Five more difurance the same carbon skeleton as furospongin-1, have been identified in the sponges Spongia officinalis and Hippospongia communis, namely anhydrofurospongin-1 (II), furospongin-2 (III), isofurospongin-2 (IV), dihydrofurospongin-2 (V) and tetrahydrofurospongin-2 (VI).

IN A PREVIOUS PAPER¹ we reported the presence of furospongin-1 (I), apparently an oxidised linear sesterterpenoid. in the sponges *Spongia officinalis* and *Hippospongia communis*. We have now isolated five new C-21 furanoterpenes, present in smaller amounts and closely related to furospongin-1 (I). and have named them anhydro-furospongin-1 (II). furospongin-2 (III). isofurospongin-2 (IV). dihydrofurospongin-2 (V) and tetrahydrofurospongin-2 (VI).

267

Anhydrofurospongin-1 (II). $C_{21}H_{28}O_2$ is a colourless optically inactive oil. Its NMR spectrum shows the presence of 2 β -methylene-substituted furan rings [two broad singlets at δ 7.22 (2H) and 7.09 (2H). attributable to four α -hydrogens a broad singlet at δ 6.15 (2H) due to two β -protons and one four-proton triplet (J = 6 Hz) at δ 2.34 assignable to two methylene groups attached to the furan rings] and also of two —CH=CMe—groupings [six-proton singlet at δ 1.58 broadened by long range coupling (Me *trans* to the olefinic protons in an isoprene residue)² and a two-proton broad multiplet at δ 5.08]. In addition a broad multiplet (8H) at δ 2.00 (C=C-CH₂) and a two-proton signal at δ 1.65 (m. -CH₂CH₂CH₂--) account for all the hydrogens in the molecule.

The presence of furan rings is also revealed by the IR spectrum (v_{max} 3140. 1570. 1500. 1165. 1065. 1020. 875. 780 cm⁻¹)^{3,4} mass spectrum [ions at m/e 67 (C₄H₃O⁺) and 81 (base peak. C₄H₃OCH₂⁺)] and UV spectrum (λ_{max} 220 nm. ε 8.900 in cyclohexane).

Anhydrofurospongin-1 (II) yielded a mixture of reduction products by catalytic hydrogenation under various mild reaction conditions.⁴ In order to obtain the tetra-hydroderivative (VII) selectively. both from anhydrofurospongin-1 (II) and from the dehydration product (VIII)¹ of furospongin-1 we resorted to metal-catalysed transfer-hydrogenation.⁵ Using decalin and Pd/C under reflux for 2 hr we obtained the same tetrahydroderivative. (VII: M^+ 316). in good yield. from both (II) and (VIII), as demonstrated by MS. TLC and GLC. Therefore, as anhydrofurospongin-1 (II) has the same framework as VIII.¹ our next concern was to establish the position of

the two double bonds in this natural compound. This problem was solved by ozonolysis of anhydrofurospongin-1 which gave, in agreement with structure II, succinic, levulinic and 5-oxohexanoic acids. Prominent peaks in the mass spectrum of II at m/e 163 [C₄H₃OCH₂CH₂CH₂CH₂C(CH₃)=CHCH₂⁺] and 149 [C₄H₃OCH₂CH₂CH₂CH=C-(CH₃)CH₂⁺] confirm the assigned structure.

Furospongin-2 (III). $C_{21}H_{26}O_3$ (M⁺ at m/e 326), a colourless oil. $[\alpha]_D = 0^\circ$. shows UV (λ_{max} 242 nm. ε 18.200) and IR (ν_{max} 1670 and 1610 cm⁻¹) absorption spectra characteristic of an α,β -unsaturated ketone. The presence of an α,β -unsaturated ketone is also indicated by the one-proton broad singlet at δ 605 (H-12) and the three-proton doublet (J = 1.3 Hz) at δ 2.11 (Me on C-13), coupled to each other as demonstrated by double resonance experiments: on irradiation of the vinylic proton signal at δ 6.05 the doublet at δ 2.11 collapses to a singlet and the reverse experiment (irradiation at δ 2.11) causes the broad singlet at δ 6.05 to sharpen. In addition, the low-field resonance of the vinylic Me group (δ 2.11) suggests that it may be *cis* to the > CO group.⁶

The NMR spectrum also shows the presence of two β -methylene-substituted furan rings (Experimental). a H₂C—CH=CMe— grouping [(δ 5·31. 1H. t. J = 6 Hz) and (δ 1·60, 3H, bs; Me trans in an isoprene residue)²] and a methylene group, the protons of which resonate as a singlet at low-field [δ 3·03. >C=C(Me)—CH₂—CO—]. The remaining signals at δ 2·16 (bm. 4H) and at δ 1·75 are attributable to three —CH₂—. two of which (δ 2·16) must be linked to a double bond. All this spectral information. together with biogenetic considerations. suggests structure III for furospongin-2. This was confirmed by NaBH₄-pyridine reduction⁷ of the natural compound, which gave, in good yield, an alcohol with spectral (UV. IR. NMR and MS) and chromatographic (TLC on silica gel) properties identical with those of furospongin-1 (I).¹ Prominent peaks in the mass spectrum of III at *m/e* 177 and 149. corresponding to cleavages of the bonds adjacent to the keto group, agree with the suggested structure.

Isofurospongin-2 (IV). $C_{21}H_{26}O_3$. shows UV. IR and mass spectra identical with those of furospongin-2 (III). The NMR spectrum is almost identical; the only difference

being a shift of the Me resonance at $\delta 2.11$ in the spectrum of furospongin-2 to 1.83 in that of isofurospongin-2. From this evidence we conclude that furospongin-2 (III) and isofurospongin-2 (IV) differ only in the configuration of the $\Delta^{12, 13}$ double bond. Accordingly isofurospongin-2 can be represented by IV; the higher field resonance of Me on C-13 (δ 1.83) agrees with the assigned stereochemistry (Me *trans* to >CO) and further supports the configuration of the 12. 13 double bond for furospongin-2 (III). On NaBH₄-pyridine reduction. isofurospongin-2 gave. as expected, an alcohol indistinguishable from furospongin-1 (I), when compared by TLC. IR and MS.

Dihydrofurospongin-2 (V). $C_{21}H_{28}O_3$. M^+ 328. $[\alpha]_D = -0.91^\circ$ (CHCl₃). λ_{max} 220 (8.900) nm. possesses a keto group (ν_{max} 1710 cm⁻¹). two β -methylene-substituted furan rings and a -H₂C-CH=CMe group (NMR in Experimental). thus accounting for all the unsaturation in the molecule. Moreover, a singlet (2H) at δ 2.90 in the NMR spectrum and prominent peaks in the mass spectrum at m/e 179 and 149 corresponding to the fragments a and b (V) indicate the presence in the molecule of the unit -H₂C-CH=C(Me)-CH₂-CO- and suggest structure V. apart from the stereochemistry. for dihydrofurospongin-2. Furospongin-1 (I). when oxidised with the CrO₃-pyridine complex, gave a ketone. $[\alpha]_D = -1.04^\circ$ identical in all respects with dihydrofurospongin-2. thus establishing the structure and the absolute configuration for the latter, as formulated in V.

Tetrahydrofurospongin-2 (VI). $C_{21}H_{30}O_3$. M⁺ 330. $[\alpha]_{589, 578, 546, 436, 365} = 0^{\circ}$. $\lambda_{max} 220 (\varepsilon. 10.700)$ nm. $v_{max} 1710 (>C=O.$ ketone) is a colourless oil. The NMR spectrum indicates the presence of two β -methylene-substituted furan rings (Experimental) and of two sec Me groups at $\delta 0.85$ (d. J = 6 Hz). The fact that tetrahydrofurospongin-2 exhibits no optical rotation. coupled with the NMR data (two sec Me groups). suggests that this natural compound possesses a symmetrical structure, the two halves being mirror images. If this is correct the CO group would be situated in the central part of the molecule: this is supported by the mass spectrum in which only one peak (m/e 179) corresponding to the cleavage of the bonds adjacent to the CO group. could be observed.

The structure VI. apart from stereochemistry, for tetrahydrofurospongin-2 was also confirmed by Pd/C transfer-hydrogenation of dihydrofurospongin-2 (V) in refluxing decalin which afforded a reduced ketone (mixture of diastereoisomers), identical with tetrahydrofurospongin-2, when compared by GLC. NMR and MS. As far as the stereochemistry of tetrahydrofurospongin-2 is concerned, the fact that it exhibits no optical rotation (rotations were measured at five different wave lengths) indicates that the natural compound is either a racemate or, more probably, the *meso*-diastereoisomer as formulated in VI.

EXPERIMENTAL

Instrumental techniques were given in the previous paper.¹

Isolation of anhydrofurospongin-1 (II), furospongin-2 (III), tetrahydrofurospongin-2 (VI), dihydrofurospongin-2 (V) and isofurospongin-2 (IV) from Spongia officinalis

The extraction of fresh material (350 g. dry weight after extraction) and the subsequent chromatography in benzene on silica gel of the crude extract was described previously.¹

Anhydrofurospongin-1 (II). Fractions 2-3 were further chromatographed in light petroleum (40-70°) over SiO₂ (20 g; ϕ 1·1) to give 30 mg of anhydrofurospongin-1 (II) (fractions 46-49; fractions of 10 ml were collected) as an oil. $[\alpha]_{\rm D} = 0^{\circ}$: UV $\lambda_{\rm cel}^{\rm cel}$ 220 nm. ε 8.900; IR (liquid film) 1620 (>C=C<) and

1570. 1500. 1165, 1065. 1020. 875. 780 (furan rings) cm⁻¹; NMR δ (CCl₄) 7·22 (2H. bs. furan α-H). 7·09 2H. bs. furan α-H), 6·15 (2H. bs. furan β-H). 5·08 (2H. bm. CH=C). 2·34 (4H. bt. J = 6 Hz. C₄H₃O—CH₂—). 2·00 (8H. bm. C=C-CH₂). 1·65 (2H. bm. CH₂CH₂CH₂) and 1·58 (6H. bs. *trans* MeC=C); MS. *m/e* (%) 312 (35. M⁺). 135 (70). 95 (55). 81 (100). and 67 (25). (Found: C. 80·28; H. 8·78. C₂₁H₂₈O₂ requires: C. 80·73; H. 9·03%).

Furospongin-2 (III). Fraction 12 (40 mg) was subjected to prep TLC (2 runs) using benzene light petroleum (40-70°) (9:1). The band (R_f 0.4) (blue in UV light) was scraped off and eluted with CHCl₃ to yield *furospongin*-2 (III) (27 mg). $[\alpha]_D = 0^\circ$: UV $\lambda_{max}^{C+H^2}$ 220 and 242 nm. ε 11.400 and 8.200: IR $\nu_{HCl_3}^{CHCl_3}$ 1670 (>C=O. α , β -unsaturated ketone). 1610 (>C==C <. α . β -unsaturated ketone) and 1570. 1500. 1165. 1065. 1020. 875 (furan rings) cm⁻¹: NMR δ (CDCl₃) 7.36 (2H. bs; furan α -H). 7.25 (2H. bs; furan α -H). 6.12 (2H. bs; furan β -H). 6.05 (1H. bs. H-12). 5.31 (1H. bt. J = 6 Hz H-7). 3.03 (2H. s. H₂-10). 2.43 (4H. t. J = 6 Hz H₂-5. and H₂-17). 2.27-2.06 (4H. bm. H₂-6 and H₂-15). 2.12 (3H. d. J = 1.3 Hz. Me on C-13). 1.75 (2H. bm. H₂-16) and 1.60 (3H. bs. *trans* Me on C-8); MS. m/e (%) 326 (15. M⁺). 311 (10). 177 (5). 149 (40). 95 (80). 81 (100) and 67 (35). (Found: C. 76.97; H. 8.23. C_{2.1}H₂₆O₃ requires C. 77.30; H. 7.97%).

Tetrahydrofurospongin-2 (V1). dihydroforospongin-2 (V) and isofurospongin-2 (IV). Fractions 7-11 (250 mg) were rechromatographed on a SiO₂ (40 g) column (ϕ 1 cm) using benzene-light petroleum (40-70°) (7:3). Fractions of 40 ml were collected and monitored by TLC using *p*-(dimethylamino)benzaldehyde in conc HCl-EtOH as a spray.

Fractions 50-54 gave on evaporation. tetrahydrofurospongin-2 (VI) (50 mg) as an oil. $[\alpha]_{589, 578, 546, 436, 365} = 0^{\circ}$ (CHCl₃); UV. $\lambda_{max}^{C_{2}H_{12}}$ 220 nm ε 10.700; IR (liquid film) 1710 (>C=O) and 1560. 1500. 1160. 1065. 1025. 875 and 780 (furan rings) cm⁻¹; NMR δ (CCl₄) 7.25 (2H. bs; furan α -H). 7.12 (2H. bs; furan α -H). 6.14 (2H. bs; furan β -H). 2.36 (4H. t. J = 6 Hz. H₂-5 and H₂-17). 2.12 (4H. m. H₂-10 and H₂-12). 1.85 (2H. bm. H-8 and H-13). 1.51 (4H. m. H₂-6 and H₂-16). 1.26 (4H. m. H₂-7 and H₂-15) and 0.85 (6H. d. J = 6 Hz. Me on C-8 and C-13); the coupling between the signals at δ 2.36 and 1.51 was confirmed by double irradiation: MS. m/e (%) 330 (25. M⁺). 179 (20). 95 (35). 81 (100) and 67 (20). (Found: C. 76.10; H. 8.91. C_{2.1}H₃₀O₃ requires: C. 76.33; H. 9.09%).

Fractions 60-66 gave. on evaporation. dihydrofurospongin-2 (V) (65 mg), as an oil. $[\alpha]_D = -0.91^{\circ}$ (CHCl₃): UV. $\lambda_{ms}^{C_6H_{12}}$ 220 nm ε 8.900: IR. (liquid film) 1710 (>C=O) and 1570. 1500. 1160. 1065. 1020. 875 and 775 (furan rings) cm⁻¹: NMR δ (CCl₄) 7.23 (2H. bs: furan α -H). 7.14 (2H. bs: furan α -H). 6.16 (2H. bs: furan β -H). 5.22 (1H, bt, J = 6 Hz, H-7), 2.90 (2H, s, H₂-10), 2.46–2.05 (8H, m, H₂-5, H₂-17, H₂-12 and H₂-6). 1.90 (1H. bm. H-13). 1.56 (3H. bs. trans Me on C-8). 1.54 (2H. m. H₂-16 overlapping the Me signal). 1.26 (2H. bm. H₂-15) and 0.84 (3H. d. J = 7 Hz. Me on C-13); MS. m/e (%) 328 (10. M⁺). 179 (35). 149 (20). 95 (15). 81 (100) and 67 (15). (Found: C. 76.68; H. 8.21. C₂₁H₂₈O₃ requires: C. 76.82; H. 8.53%).

Fractions 55-59 left a residue on evaporation which was found by TLC to be a mixture. By multiple development prep TLC (2 runs). using CCl₄-ether (96:4), it could be resolved into three compounds. The slowest moving bands were dihydrofurospongin-2 (17 mg) and tetrahydrofurospongin-2 (12 mg). The fastest moving band (blue in UV light) was scraped off and eluted with CHCl₃ to give isofurospongin-2 (IV) (15 mg): UV. $\lambda_{max}^{CeH_2}$ 220 and 242 nm *e* 10.400 and 8.000; IR. (liquid film) 1680 (>C==O. α , β -unsaturated ketone) and 1570, 1500, 1165, 1065, 1025, 875 and 725 (furan rings) cm⁻¹; NMR. (CCl₄) 7.24 (2H. bs; furan α -H). 7.15 (2H. bs; furan α -H). 6.19 (2H. bs. furan β -H). 5.98 (1H. bs. H-12). 5.27 (1H. bt. J = 6 Hz. H-7). 2.96 (2H. s. H₂-10). 2.46 (8H. m. H₂-5. H₂-17. H₂-6. H₂-15). 1.83 (3H. d. J = 1 Hz. Me on C-13). 1.75 (2H. m. H₂-16) and 1.59 (3H. bs. *trans* Me on C-8); MS. *m/e* 326 (M⁺).

Isolation of (II). (III). (IV). (V) and (VI) from Hippospongia communis. Working up as above, starting from fresh material (110 g, dry weight after extraction). yielded anhydrofurospongin-1 (II. 40 mg), furo-spongin-2 (III, 100 mg), isofurospongin-2 (IV, 15 mg), dihydrofurospongin-2 (V, 85 mg), tetrahydrofuro-spongin-2 (VI. 35 mg) together with furospongin-1 (I. 350 mg).

Metal-catalysed transfer-hydrogenation of VIII and anhydrofurospongin-1 (II) VIII¹ (30 mg), 10% Pd/C (15 mg) and decalin (1 ml) were refluxed for 2 hr. Removal of catalyst and solvent left a residue chromatographed on a SiO₂ (5 g) column (ϕ 0.5 cm). Elution with light petroleum (40-70°) yielded the tetrahydro derivative (VII) as an oil (23 mg). M⁺ at m/e 316; NMR. δ (CCl₄) 7.25 (2H. bs. furan α -H). 7.11 (2H. bs. furan α -H). 6.16 (2H. bs. furan β -H). 2.35 (4H. t. J = 6 Hz. C₄H₃O---CH₂). 1.60-1.24 (16H. CH₂ and CH) and 0.85 (6H. d. J = 6 Hz. Me).

Anhydrofurospongin-1 (II; 10 mg) was similarly treated with Pd/C and decalin to give a product identical (MS. TLC and GLC) with VII.

Ozonolysis of anhydrofurospongin-1 (II). Anhydrofurospongin-1 (20 mg) in EtOAc (5 ml) was ozonized (2%

 0_3) for 3 hr at -15° . After evaporation of solvent *in vacuo*, the ozonide was decomposed with water containing a few drops of H_2O_2 . The mixture was extracted continuously for 5 hr with ether. The extract was concentrated and treated with CH_2N_2 . After removal of solvent, the degradation products were analysed by GLC (5% SE-30 and 10% DEGS at 100° and 175°, respespectively) and found to comprise methyl succinate, methyl levulinate and methyl 5-oxo-hexanoate, by comparison with authentic samples.

NaBH₄-pyridine reduction of furospongin-2 (III) and isofurospongin-2 (IV). Furospongin-2 (50 mg). NaBH₄ (25 mg) and pyridine (5 ml) were kept at room temp for 24 hr. Water (20 ml) was added to the mixture. which was extracted with light petroleum (50 ml in 3 portions). The light petroleum soln was washed. dried (Na₂SO₄) and evaporated to give crude product. chromatographed on SiO₂ in benzene to yield furospongin-1 (I) (38 mg) identified by UV. IR. NMR. MS and TLC.

Isofurospongin-2 (25 mg), when treated with NaBH₄ and pyridine as described above, also yielded furospongin-1 (I) (13 mg), characterized by IR. MS and TLC.

 CrO_3 -pyridine oxidation of furospongin-1 (I). Furospongin-1 (200 mg) in pyridine (0.6 ml) cooled to 15° was added to the CrO_3 -pyridine complex (4 ml).⁸ The mixture was left at room temp for 3 days, poured into water, and ether extracted. The extract (189 mg) was purified by chromatography on SiO₂ (35 g) in benzene to give a product (140 mg). $[\alpha]_D = -1.04^{\circ}$ (CHCl₃). identical (UV. IR. NMR and MS) with dihydro-furospongin-2 (V).

Metal-catalysed transfer-hydrogenation of dihydrofurospongin-2 (V). Dihydrofurospongin-2 (50 mg) was refluxed with 10% Pd/C (25 mg) and decalin (2 ml) for 2 hr. Working up as described above followed by chromatography in light petroleum-benzene (1:1) on SiO₂ (10 g) gave a product (30 mg). $[\alpha]_D = -0.85^\circ$ (CHCl₃), identical (NMR. MS and GLC) with tetrahydrofurospongin-2.

REFERENCES

- ¹ G. Cimino, S. De Stefano, L. Minale and E. Fattorusso, Tetrahedron 28, 333 (1972)
- ² R. B. Bates and D. M. Gale, J. Am. Chem. Soc. 82, 5749 (1960); R. B. Bates, D. M. Gale and B. J. Gruner, J. Org. Chem. 28, 1086 (1963)
- ³ T. Kubota. Tetrahedron 4. 82 (1958)
- 4 A. Quilico. F. Piozzi and M. Pavan. Ibid. 1. 177 (1957)
- ⁵ E. A. Brande, R. P. Linstead and P. W. D. Mitchell, J. Chem. Soc. 3578 (1954)
- ⁶ L. M. Jackman and R. H. Wiley. Ibid. 2881 (1960)
- ⁷ W. R. Jackson and A. Zurquivah. Ibid. 5280 (1965)
- ⁸ R. H. Cornforth, J. W. Cornforth and G. Popjak. Tetrahedron 18, 1351 (1962)

Note added in proof: The stereochemistry at C-13 of dihydrofurospongin-2 (V) was established on the basis of the correlation with furospongin-1 (I).

Originally, the configuration of furospongin-1 (I)* at C-13 was proposed on the basis that $(+) \alpha$ -methyladipic acid obtained on degration possessed R configuration.[†]

More recently, C. F. Wong *et al.*[‡] have revised the stereochemistry of α -methyladipic acid, synthesizing the (-) (*R*)-isomer; therefore, the asymmetric centre C-13 of furospongin-1 (I) and accordingly of dihydro-

- * Tetrahedron 27, 4673 (1971)
- † T. Kaneko et al., Bull. Chem. Soc. Japan 35, 1149 (1962).
- ‡ J. Org. Chem. 35, 517 (1970)

furospongin-2 (V) must have S configuration and consequently, the full structures, I and V, must be changed as depicted in a and b, respectively.

